The mitogenome of Hydropsyche pellucidula (Hydropsychidae): first gene arrangement in the insect order Trichoptera

B. Linard, P. Arribas, C. Andújar, A. Crampton-Platt & A. P. Vogler

To cite this article: B. Linard, P. Arribas, C. Andújar, A. Crampton-Platt & A. P. Vogler (2017) The mitogenome of Hydropsyche pellucidula (Hydropsychidae): first gene arrangement in the insect order Trichoptera, Mitochondrial DNA Part A, 28:1, 71-72, DOI: 10.3109/19401736.2015.1110803

To link to this article: http://dx.doi.org/10.3109/19401736.2015.1110803

Published online: 18 Dec 2015.

Submit your article to this journal

Article views: 55

View related articles

View Crossmark data
The mitogenome of *Hydropsyche pellucidula* (Hydropsychidae): first gene arrangement in the insect order Trichoptera

B. Linard¹, P. Arribas¹,², C. Andújar¹,², A. Crampton-Platt¹,³, and A. P. Vogler¹,²

¹Department of Life Sciences, Natural History Museum, London, UK, ²Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK, ³Department of Genetics, Evolution and Environment, University College London, London, UK

Abstract

We describe the mitochondrial genome of *Hydropsyche pellucidula* Curtis 1834, which is first described for the suborder Annulipalpia and the first in the order Trichoptera to show a non-canonical gene order. The mitogenome was obtained by *de novo* assembly of shotgun sequenced total genomic DNA using Illumina MiSeq technology, which produced an average coverage of 115× and a minimum coverage of 48×. The mitochondrial genome includes 13 protein-coding genes, 2 rRNAs and 22 tRNAs. The genome is characterized by a rearrangement in the relative position of protein-coding and ribosomal genes. This mitogenome sequence will be useful for studying the family Hydropsychidae, which is commonly used for freshwater pollution biomonitoring.

Keywords

Biomonitoring, Hydropsychidae, Mitochondrial rearrangement, mitochondrial metagenomics

History

Received 1 October 2015
Revised 8 October 2015
Accepted 18 October 2015
Published online 8 December 2015

The insect order Trichoptera contains around 12,000 described species (Mackay & Wiggins, 1979). Both the aquatic larvae and terrestrial adult stages are essential components of aquatic and riparian communities and are used for biological assessment of water quality (de Moor & Ivanov, 2008; Mackay & Wiggins, 2003). We sequenced the mitogenome of *Hydropsyche pellucidula* BMNH-1425186 (Trichoptera: Hydropsychidae). The high biocladimal value of the genus *Hydropsyche* (Tszydel et al., 2015) makes this mitogenome a useful tool for biomonitoring approaches.

The voucher specimen was a larva manually collected from Adam’s Pond, Richmond Park, London, UK. It was morphologically identified and deposited in the Natural History Museum of London (voucher code BMNH 1425186). The mitogenome was *de novo* assembled from a metagenomic library containing other aquatic macroinvertebrates following the mitochondrial metagenomics (MMG) approach (Crampton-Platt et al., 2015; Gillett et al., 2014; Tang et al., 2014). The mitochondrial contig of *Hydropsyche pellucidula* was identified through its cox1 gene (barcode region) obtained by Sanger sequencing and by its 99.6% similarity to another barcode from Mu¨rria et al. (2010) (HM134820). Gene annotations were predicted using MITOS (Bernt et al., 2013) and were manually refined.

The resulting mitogenome is 25,004 bp long with an even read coverage of 115× on average (min: 48×; max: 280×). We identified 13 protein-coding genes, 2 rRNAs and 22 tRNAs and a particularly long control region (~8 kb). A terminal AT-rich region did not allow us to circularize the genome with confidence. The gene order differs from canonical insect mitochondria. The rrnS, generally located between the rrnL and the control region, is displaced to a region between cob and nad1 and is flanked by two regions of around 600 and 800 bp for which homology could not be established. Additionally, two tRNAs (trnP, trnl) are also found in non-canonical positions.

The sequence was validated by the construction of a phylogenetic tree for the order Trichoptera based on protein-coding and rRNA genes from all complete or nearly complete mitogenomes and transcriptomes retrieved from GeneBank (September 2015; Benson et al., 2014). The dataset included 9 different species sharing a set of mitochondrial loci (atp6, cob, cox1, cox2, cox3, nad1, nad3, nad4 and rrnL). Three Lepidoptera genomes were selected as outgroups. Multiple alignments were built for each locus with MAFFT (Katoh & Standley, 2013) and a maximum-likelihood phylogenetic analysis was conducted in RAxML-HPC2 (Stamatakis, 2006) on the CIPRES server (Miller et al., 2010). The best tree was selected over 100 alternative runs, using a GTR-cat model and node support was calculated with 10,000 bootstrap replicates.

As expected, *Hydropsyche pellucidula* is placed in the suborder Annulipalpia (Figure 1), which is recovered as monophyletic. In contrast, the suborder Integripalpia appears to be paraphyletic and contentious as previously reported (Ivanov, 2002; Kjer et al., 2002). The tree is also consistent with the recent phylogenomic analysis of Misof et al. (2014). The rearrangement cannot be assigned to a specific phylogenetic level, as other Annulipalpia data are based on transcriptomes and unknown gene order. The mitogenome was deposited in GeneBank:KT876876.
Figure 1. Phylogeny of the order Trichoptera based on 9 mitochondrial loci (atp6, cob, cox1, cox2, cox3, nd1, nd3, nd4 and rrnL). The new mitogenome is highlighted with a white box. Suborders are delimited by red (Annulipalpia) and blue (Integripalpia) backgrounds. Trichoptera species with a complete mitochondrial genome are marked by an asterisk. All other species are based on transcriptomic data, i.e. their relative gene order remains unknown.

Acknowledgments

We would like to thank Alex Aitken, Kevin Hopkins and Peter Foster (Natural History Museum), for their technical assistance and Núria Bonada and Félix Picazo for her help in morphological identification. PA, CA collected the specimen. PA performed wet lab work. BL, ACP ran the bioinformatic analyses. BL wrote the manuscript and APV supervised the project.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article. This work was founded by the NHM Biodiversity Initiative. PA was supported by a postdoctoral grant from The Royal Society (Newton International Program, UK).

References
